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Compressive surface strengthening of 
brittle materials 

D A V I D  J. GREEN 
Structural Ceramics Group, Rockwell International Science Center, Thousand Oaks, 
CA 91360, USA 

A theoretical approach has been put forward for predicting the strengthening of materials 
by the introduction of surface compressive stresses. An approximate technique was used 
to determine the closure length of a linear surface crack which extends through the 
compressive surface layer. The stress intensity factor of the partially closed crack was 
then determined for the case of an applied tensile stress; with the assumption that the 
residual surface compressive stress was uniform within the surface layer (step function). 
The analysis shows that the strengthening depends on the magnitude and depth of the 
compressive surface stress. It is found that partial crack closure decreases the amount of 
strengthening compared with that predicted for an open crack, and that for large com- 
pressive surface stresses the amount of strengthening can saturate. 

1. Introduction 
The strength of ceramics or glasses can often be 
increased by placing their surfaces into com- 
pression. Techniques include ion exchange, tem- 
pering, glazing, surface chemical reactions and 
stress-induced phase transformations. Although 
most of these techniques are well recognized, a 
theoretical approach to optimization of the 
strengthening has not been developed. The aim 
of this paper is to use fracture mechanics to 
predict the amount of strengthening obtained 
for a simple residual stress distribution and, in 
particular, to identify the important material 
and process parameters that need to be controlled. 
Such an approach would be expected ' to  be 
relatively straightforward as many crack loading 
geometries have been solved. The presence of 
compressive residual stresses does, however, lead 
to compfications in the analysis, as the crack can 
be partially closed at the failure condition. These 
difficulties have impeded the theoretical develop- 
ments. Partial crack closure in simple configur- 
ations has been analysed by several authors [1-5] ,  
while for more complex situations, numerical 
approaches have been used [6-10].  In this paper 
a simplified approach to the crack closure problem 
for surface cracks is used and the stress intensity 

factor is then derived in a more rigorous fashion. 
The degree of strengthening is then determined 
by inserting the appropriate fracture criterion, 
thus identifying the important parameters. 

oc - for t > x > (W - t) 

(1) 
and 

2. Theoretical approach 
Consider an infinitely long isotropic plate, width 
W, which is subjected to the residual stress distri- 
bution shown in Fig. 1. This problem is a limiting 
case of an analysis by Oel and Frechette [1 I], and 
it can be shown that the surface (oc) and interior 
(at) stress are given by 

(1  - v)  

2Eet 
f o r t < x < ( W - t )  (2) crt - ( 1 - v ) W  

where E is the Young's modulus, v the Poisson's 
ratio and e is the linear strain associated with the 
uniform volume change that occurs at the surface. 
As can be determined from Equations 1 and 2, 
a volume increase at the surface leads to a surface 
compressive stress and a compensating interior 
tensile stress. Such a redisual stress distribution 
is expected to be a reasonable approximation for 
many glazing, enamelling or sealing operations. 
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Figure 1 Residual stress distribution in an isotropic flat 
plate, in which the surface has undergone a uniform 
volume increase. 

For the situations where the surface layers have 
a different composition from the inside material, 
Equations 1 and 2 become slightly more com- 
plicated [11]. 

The production of ceramic bodies with a 
compressive surface layer is  expected to lead 
to strengthening, as a compressive stress will 
oppose applied tensile stresses, particularly when 
fracture occurs from flaws at or near the surface. 
When the entire flaw is subjected to the com- 
pressive stress the increase in strength of the body 
(Ao0 will be simply given by 

A o ~  = - o c  ( 3 )  

In many cases, however, it is expected that the 
flaw size will be greater than the depth of the 
compressive zone and it is important to be able 
to predict the amount of strengthening that will 
occur. As can be seen from Equation 1, this will 
lead to an optimization process, as the more 
shallow the depth of the compressive zone, the 
larger is the surface compressive stress. 

Consider now a semi-infinite body containing 
a surface crack, length ao. For this situation the 
residual stress distribution will be given by 

--Ee 
ae ~ ( 1  v) f o r x < t  (4) 

and 
ot ~ 0 f o r x > t  (5) 

For situations where the surface layers are a differ- 

ent material, the elastic constants in Equation 4 
refer to the surface material. In the absence of an 
applied stress, the residual stress will act to close 
the crack so that its surfaces are in contact. For 
example, it is expected that the crack surfaces 
will be in contact to a depth t, except where 
t/ao ~> 1, when the crack will be completely closed. 
When a tensile stress is applied to the body the 
crack will begin to open until at a critical applied 
stress the crack surfaces will no longer be in con- 
tact. The primary purpose of this paper is to 
consider situations where t/ao < 1 and in particular 
to derive the stress intensity factor (KI) for this 
configuration. In this way it will be possible to 
determine the strengthening in terms of t/ao. 
In order to do this however, it is necessary to 
compute the amount of crack closure as a function 
of the residual and applied stresses. 

2.1. Crack closure analysis 
A partially closed surface crack is illustrated in 
Fig. 2. For the residual stress distribution being 
considered, the surface crack is assumed to open 
from its tip back to the surface under the action 
of an applied stress. This is reasonable when 
t/ao < 1, as considered in this analysis. It should, 
however, be noted that when t/ao 7> 1, the lower 
constraint at the surface would probably lead to 
the crack opening in the opposite direction. For 
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Figure 2 Surface crack in a semi-infinite plate, with partial 
crack closure due to the surface compression. 
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these situations, however, the strengthening should 
be simply given by Equation 3. 

It  has been noted by other workers [3, 5, 8, 9] 
that the stress intensity factor at the contact zone 
(left-hand crack tip in Fig. 2) will be zero. It is 
possible using this information to determine the 
crack closure length, c. This procedure is relatively 
complex, but for this work a simple solution 
derived by Barenblatt [12] will be used. This 
solution is strictly only valid for an internal crack 
in an infinite body but as will be shown later it 
gives a reasonable description of the closure length. 
In terms of Fig. 2 the closure distance, c, can be 
determined from [12]: 

cosI ~ a 

a + ( t  - c) \ 2 o c }  

where oa is the applied tensile stress. Using 
2a = a0 -- t, one obtains 

c: ~- (l + 4)  c ~  (7) 
2 cosa  

where c : = c / a o ,  tl #- t/ao and a =  71%/2%. 
Equation 7 is illustrated in Fig. 3. It can be seen 
that the crack opens completely at a critical value 
of Oa/O c which depends on tl. As indicated 
earlier, the analysis is not expected to be valid 
for t~ ~ 1. This is reflected in Equation 7, when 
for tl = 1, the crack closes completely (cl = 1). 

For values of  tl >~ 1, it is simply assumed that the 
crack is completely closed until Oa = -  ae and 
then it becomes completely open. It should also 
be noted that the use of  Equation 6 ignores the 
effect of the free surface of the closure length; 
this is expected to be important as cl ~ 0. For 
these conditions, however, the crack will be 
almost completely open and provided the stress 
intensity factor solution approaches that of an 
open crack, the approximation Should be reason- 
able. 

2.2. Calculation of the stress 
intensity factor 

For an internal crack, length 2ao and closed over 
its central portion, it has been shown that [2] 

[ \1/2 

: o(xl)XldXl 
• f.e, [(1--x~)(x~Uc2~)] a/2 (8) 

where xx = X/ao, o(x:) is the prior stress acting 
along the plane of the crack, and the crack is 
closed between - c  and c. The coordinate axes 
are located so the plane of the crack lines along 
y - - 0  and the centre of the crack is at x = 0 .  
In order to apply this solution to that of a surface 
crack, the effect of the free surface should be 
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Figure 3 Crack 616sure length as a function 
of the compressive zone depth and applied 
stress. 
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included. This is usually accomplished by modify- 
ing the stress distribution by the factor [13]: 

f(xa) = 1 . 2 9 4 -  0.6857x] + 1.1597x4a 

- 1.7627x 6 + 1.5036 x ] - 0.5094x1 ~ 

(9) 

For the residual stress distribution given by 
Equations 4 and 5 and an applied tensile stress, 
Equation 8 can be re-written as 

i \1/2 
KI = 2 { ~ )  (1 - -c~)U = 

(; x [ ( 1 -  1 ) (x l - -  1 X'2 .2 C'~)]1/2 

1 ~ ~ (10) 
- + f t ,  [(1 ,x])(x]-c~)]v2j �9 

Now if we change variables 

xl = (11) 

and express f(xa) in terms o f u  2, i.e. 
;"~ 5 

f (Xl) - - - -~  2 &2k u2k ( t 2 )  
k=O 

one obtains 
/ \1,/2 : 

= ) - -  ~2 k 
j , k=0 

[ ft21d2k(O a "Jr" oe) dld -~- 1 u2~(oa)du 1 
X\) 0 ~ -  = IA2) 1'2 ft~ ( l  - -  b/2)1/2/ 

(13)  
where r 2 2 -11/2 

= t2 [1 --c2a] (14) 

From standard integral tables 

u2kdu _ (2k)! / _ ( 1  _u2)1/2 f - (1  - -u2)  1/2 (k!) 2 

• ~ + ~-~sin- lu  
r = l  

(15) 

The final solution for the stress intensity factor is 
given by 

g I = oc(rrao)'/2(1 - -  c2)  1/2 

(16) 
where 

__s a2k(2k)!(1 Fl(t2) = ~, - 

I, = 1 2 ( k ! ) 2  

5 
• X r ! ( r -1 ) ! tF - '  

r=l 2~k-2r+1(2r) ! (17) 
and 5 

F2(Cl) = ~ a2h(2k)! (18) 
t, =o (k!)~22k 

It can be shown that Equation 16 agrees with 
several limiting cases. For example, in the absence 
of a residual stress (% = 0 and Cl = 0) 

K I = 1.1215 Oa(Trao) 1/2 (19) 

in agreement with the solutions for a surface crack 
in an applied tensile stress field[13]. For the con- 
dition where - % = o e, (cl = 0) 

K,= o,(Trao)'/~(2cos-ltl)G(t,) (20) 

The solution agrees with that derived for a uniform 
stress near a crack tip [13], where 

[ rrFl(t2) I (21) G(tO= 1 . 1 2 1 5 - - [ 2 c o s _ 1 ( t 0  

Finally, for oa = 0 and oc a tensile stress (i.e. 
cl = 0 and t2 = t0 ,  

K I  = Oe(Trao)l/2( 2 sin-ltl)H(tl) ( 2 2 )  

where 

7rF1 (t2) 
H(t,) = 1.1215 + 2 sin-a(tx) (23) 

This solution agrees with previous solutions [14, 
15] for 0 <  t l <  1, in which a surface crack has a 
uniform stress near the free surface. 

In order to determine the conditions for 
strengthening, the fracture criterion must be used, 
i.e. K x = K e. Using this condition and K e = 1.1215 
o ~ (rrao) 1/2, where of ~ is the strength of  the body in 
the absence of  residual stress, Equation 16 can be 
rewritten as 

o ~ 0.8917(1 -c])V2oe 
Of O'f 

x l(t2)+FffcO of+ t~ 
Tr 

(24) 

Therefore, by choosing (of /%),  one can calculate 
c~ and t2 and then determine the degree of 
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Figure 4 Strengthening due to surface compression in a 
semi-infinite plate in terms of base strength of material, 
magnitude of compressive stress and the ratio of com- 
pressive zone depth to surface crack size. The arrows in 
the figure indicate the value of -- a~/a e below which the 
crack is partially closed. 

strengthening (of/a~). This equation is illustrated 
in Fig. 4 and will be discussed in the following 
section. It was noted in the analysis that the 
partial closure solution simply merged with the 
open crack solution at a critical value of  (at~at). 
For values o f  tl~> 1, the strengthening can be 
calculated simply using 

ao 1 + (25) 

:3 .  D i s c u s s i o n  

The data in Fig. 4 have important consequences 
for the optimization o f  compressive strengthening. 
Maximum strengthening occurs when the crack is 
completely embedded in the compression zone, 
i.e. the upper curve in Fig. 4. For these cases, the 
strengthening depends only on the magnitude o f  
the surface compressive stress, such that increasing 
the compressive stress i nc r ea se s  ( a f / o ~ ) .  

For cases where ( t /ao)< 1, the situation 
becomes more complicated, such that as (t/ao) 
decreases, the degree of  strengthening decreases. 
The strengthening can still be increased by 
increasing the magnitude o f  the surface comp- 

pression, but this effect saturates at low values 
o f - - ( 0 ~  This reflects the situation where the 
surface crack is partially closed at failure. For 
(o~/oc) ~ 0, the crack is so "tightly closed" at the 
surface that the surface crack now acts more like 
an internal crack of  length (ao -- 0/2,  particularly 
when ta approaches unity. This saturation effect 
can be estimated by comparing the strength of  a 
material containing an internal crack, length 
( a o - - 0 / 2 ,  with one containing a surface crack, 
length ao, i.e. 

K c = 1.1215 a~(~rao) in = a~[Tr(a0-- 0/2] 1/2 

(26) 
or 

o~ = 1.1215 t l - - "  (27) 
E 

Table I compares the estimated saturation value 
of  (af/a~) E from Equation 27 with that o f  
Equation 24, and indicates that the estimate 
is reasonable. For large values o f - ( a ~  the 
crack is completely open at failure. 

It is worth considering in some more detail the 
criterion when the surface crack opens completely. 
From Equation 7 it is straightforward to show 
that this occurs when 

o~ /> (28) 
% rr \1 + t l ]  

This condition is shown by the arrows in Fig. 4. 
It is interesting to note that this occurs when 
a ~ / % " ' 0 . 4 .  F o r  values greater than this, the 
amount of  strengthening quickly saturates. There 
is, therefore, no point in increasing the magnitude 
of  the surface compression above ~ 3  to 4 a ~ 
when t l <  1. An approach to optimization of  
compressive surface strengthening is to use com- 
pressive surface stresses in this range and then 
find ways of  increasing their depth. Once the 
surface crack becomes completely embedded in 

T A B L E I Comparison of saturation values of (afla~) 

t/ao o * 

0.5 2.243 2.078 
0.6 2.508 2.456 
0.7 2.896 2.865 
0.9 5.016 5.007 
0.95 7.093 7.089 
0.99 15.860 15.860 

*Equation 27. 
t Equation 24. 
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the compressive zone, the maximum benefit 
from surface compression can be obtained. 

It was found in the analysis that crack closure 
effects reduce the amount of predicted strength- 
ening compared to techniques in which super- 
position of the residual and applied stress fields 
is used, such as the work of Swain [16]. It is thus 
important to determine whether surface cracks 
are open when failure occurs and simple super- 
position can be used or whether the more complex 
partial crack closure analysis is required. 

It has been shown that the strengthening 
depends on the magnitude and depth of the com- 
pressive zone. The control of these parameters 
will depend on the process being used to induce 
the surface compression. It is important, therefore, 
to understand the process variables, particularly if 
% varies with zone depth. Moreover, it should also 
be remembered that the process itself may change 
the surface flaw characteristics, for example by 
subcritical extension of the surface cracks. Such 
effects can be incorporated into the analysis 
provided the final crack sizes or their growth rates 
are known. As an alternative to increasing the 
depth of the compressive zone, the strengthening 
can also be increased by reducing the size of the 
surface cracks. 

Further to this point, it has been assumed in 
the analysis that failure in compressively- 
strengthened materials still occurs by the 
extension of surface cracks. However, it clearly 
is possible that an alternative flaw population, 
such as internal flaws, could become active. In 

'such cases, the potential strengthening discussed 
in this paper would not be accomplished and 
alternative failure models would need to be 
analysed. 

The stress configuration and crack geometry 
analysed in this paper are somehwat simplistic and 
there is a need to generalize the effects of more 
complicated residual stress distributions on more 
realistic crack shapes. The present analysis does, 
however, establish that crack closure effects can 
limit strengthening due to surface compression 
and indicates approaches for maximizing the 
degree of strengthening. In addition, there is a 
need to incorporate the effects of local residual 
fields. The influence of single indentations in 
compressively-stressed surfaces has been analysed 
by  Lawn and Marshall [7]. In such cases the 
influence of crack closure is more complex and 
bounds are needed to identify the relative inter- 
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action between local and long-range surface effects 
on crack growth. 

4, Conclusions 
An approach has been put forward for predicting 
the degree of strengthening of a brittle material, 
when it is subjected to simple step function 
residual stress distribution. The approach involves 
the calculation of the amount of crack closure and 
the subsequent determination of the stress inten- 
sity factor for the particular configuration. It is 
found that the strengthening simply depends on 
the magnitude of the compressive stress and the 
ratio of the compressive layer depth to flaw size 
(tl). In particular, when tl~> 1, the maximum 
strengthening is obtained. For a given surface 
compressive stress, the strengthening can be 
increased by decreasing surface crack size and/or 
increasing the depth of the compressive zone 
(t 1 < 1). Alternatively, the strengthening can be 
increased by increasing the magnitude of the 
compressive stress. This effect, however, saturates 
at high values of compressive stress due to partial 
crack closure when tz < 1. The situation where 
the crack is partially closed at failure occurs when 
- -  a ~ / o e  ~ 0.4. Once this occurs the strengthening 
quickly saturates. Thus, there is no point in using 
compressive stresses of higher magnitude and 
techniques for increasing the depth of the com- 
pression zone have a more significant effect on 
the strengthening. 
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